References

Locatelli E., Bost, W., Fournelle, M., Llop, J., Larraitz, G., Arena, F., Lorusso, V., Comes Franchini, M., (2014), Targeted polymeric nanoparticles containing gold nanorods: a therapeutic approach against glioblastoma, J Nanopart Res 16: 2304. doi:10.1007/s11051-014-2304-7

Strohm, E.M., Moore, M.J., Kolios, M.C. (2016), High resolution ultrasound and photoacoustic imaging of single cells. Photoacoustics. 2016 Jan 18;4(1):36-42. doi: 10.1016/j.pacs.2016.01.001. eCollection 2016.

Strohm, E., Czarnota, G. J., & Kolios, M. C. (2010). Quantitative measurements of apoptotic cell properties using acoustic microscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 57(10), 2293–304. doi:10.1109/TUFFC.2010.1690

Brand, S., Weiss, E. C., Lemor, R. M., & Kolios, M. C. (2008). High frequency ultrasound tissue characterization and acoustic microscopy of intracellular changes. Ultrasound in Medicine & Biology, 34(9), 1396–407. doi:10.1016/j.ultrasmedbio.2008.01.017

Blouin, S., Puchegger, S., Klaushofer, K., & Roschger, P. (2011). E-modulus mapping at bone packet level: Combination of scanning acoustic microscopy in time of flight mode and back scattered electron imaging. Bone, 48, S183. doi:10.1016/j.bone.2011.03.426

Blouin, S., Puchegger, S., Roschger, A., Berzlanovich, A., Fratzl, P., Klaushofer, K., & Roschger, P. (2014). Mapping Dynamical Mechanical Properties of Osteonal Bone by Scanning Acoustic Microscopy in Time-of-Flight Mode. Microscopy and Microanalysis : The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 1–13.
doi:10.1017/S1431927614000646

Puchegger, S., Fix, D., Pilz-Allen, C., Roschger, P., Fratzl, P., & Weinkamer, R. (2014). The role of angular reflection in assessing elastic properties of bone by scanning acoustic microscopy. Journal of the Mechanical Behavior of Biomedical Materials, 29, 438–50. doi:10.1016/j.jmbbm.2013.10.004

Blouin, S., Puchegger, S., Klaushofer, K., & Roschger, P. (2012). Mechanical properties of articular cartilage/bone interface assessed by scanning acoustic microscopy. Bone, 51(6), S8. doi:10.1016/j.bone.2012.08.018

Weiss, E. C., Lemor, R. M., Pilarczyk, G., Anastasiadis, P., & Zinin, P. V. (2007). Imaging of focal contacts of chicken heart muscle cells by high-frequency acoustic microscopy. Ultrasound in Medicine & Biology, 33(8), 1320–6. doi:10.1016/j.ultrasmedbio.2007.01.016

Fadhel, M. N., Berndl, E. S. L., Strohm, E. M., & Kolios, M. C. (2015). High-Frequency Acoustic Impedance Imaging of Cancer Cells. Ultrasound in Medicine & Biology, (July). doi:10.1016/j.ultrasmedbio.2015.06.003

Fournelle, M., Bost, W., Tarner, I. H., Lehmberg, T., Weiß, E., Lemor, R., & Dinser, R. (2012). Antitumor necrosis factor-α antibody-coupled gold nanorods as nanoprobes for molecular optoacoustic imaging in arthritis. Nanomedicine : Nanotechnology, Biology, and Medicine, 8(3), 346–54. doi:10.1016/j.nano.2011.06.020

Bost, W., Kohl, Y., Stracke, F., Fournelle, M., & Lemor, R. (2009). High resolution optoacoustic detection of nanoparticles on living cells. In 2009 IEEE International Ultrasonics Symposium (pp. 120–123). IEEE. doi:10.1109/ULTSYM.2009.5441726

Kohl, Y., Kaiser, C., Bost, W., Stracke, F., Fournelle, M., Wischke, C., … Lemor, R. (2011). Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging. Nanomedicine : Nanotechnology, Biology, and Medicine, 7(2), 228–37. doi:10.1016/j.nano.2010.07.006

Strohm, E. M., Berndl, E. S. L., & Kolios, M. C. (2013). High frequency label-free photoacoustic microscopy of single cells. Photoacoustics, 1(3-4), 49–53. doi:10.1016/j.pacs.2013.08.003

Strohm, E. M., Gorelikov, I., Matsuura, N., & Kolios, M. C. (2012). Acoustic and photoacoustic characterization of micron-sized perfluorocarbon emulsions. Journal of Biomedical Optics, 17(9), 96016–1. doi:10.1117/1.JBO.17.9.096016

Strohm, E. M., Berndl, E. S. L., & Kolios, M. C. (2013). Probing red blood cell morphology using high-frequency photoacoustics. Biophysical Journal, 105(1), 59–67. doi:10.1016/j.bpj.2013.05.037

Weiss, E. C., Anastasiadis, P., Pilarczyk, G., Lemor, R. M., & Zinin, P. V. (2007). Mechanical Properties of Single Cells by High-Frequency Time-Resolved Acoustic Microscopy. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on. doi:10.1109/TUFFC.2007.530

Moore, M. J., Strohm, E. M., Moore, M. J., & Kolios, M. C. (2015). Single cell photoacoustic microscopy : a review, (JANUARY). doi:10.1109/JSTQE.2015.2497323

Pasternak, M. M., Strohm, E. M., Berndl, E. S., & Kolios, M. C. (2015). Properties of cells through life and death – an acoustic microscopy investigation. Cell Cycle, 14(18), 2891–2898. doi:10.1080/15384101.2015.1069925

Berndl, E. S., & Kolios, M. C. (2013). Acoustical imaging of internal spheroid structures at a variety of frequencies. The Journal of the Acoustical Society of America, 133(5), 3542. doi:10.1121/1.4806407

Kolios, M. C., Berndl, E. S., Wirtzeld, L. C., Strohm, E. M., & Czarnota, G. J. (2013). Acoustic and photoacoustic imaging of spheroids. The Journal of the Acoustical Society of America, 133(5), 3539. doi:10.1121/1.4806396

Blouin, S., Puchegger, S., Roschger, A., Berzlanovich, A., Fratzl, P., Klaushofer, K., & Roschger, P. (2014). Mapping Dynamical Mechanical Properties of Osteonal Bone by Scanning Acoustic Microscopy in Time-of-Flight Mode. Microscopy and Microanalysis : The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 1–13. doi:10.1017/S1431927614000646

Bost, W., Lemor, R., & Fournelle, M. (2014). Optoacoustic Imaging of Subcutaneous Microvasculature With a Class one Laser. IEEE Transactions on Medical Imaging, 33(9), 1900–4. doi:10.1109/TMI.2014.2326552

Bost, W., Lemor, R., & Fournelle, M. (2012). Comparison of the optoacoustic signal generation efficiency of different nanoparticular contrast agents, Appl. Opt. 51, 8041-8046. doi: 10.1364/AO.51.008041.

Plettenberg, S., Weiss, E. C., Lemor, R., & Wehner, F. (2008). Subunits alfa, beta and gamma of the epithelial Na+ channel (ENaC) are functionally related to the hypertonicity-induced cation channel (HICC) in rat hepatocytes. Pflugers Archiv European Journal of Physiology, 455, 1089–1096. doi:10.1007/s00424-007-0355-7